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ABSTRACT

The University of Texas San Antonio (UTSA) is developing engine health monitoring
(EHM) technology that compliments the ongoing and planned research within AFRL.
The UTSA team, which also includes Southwest Research Institute, is focusing on
key technology areas including engine probabilistic-based diagnostics and
prognostics, probabilistic life prediction, and the materials science aspects of sensors.

The program consists of three distinct but related task areas that span EHM from a
systems engineering level, to a specific damage-based life prediction processor, to a
durability assessment of sensing materials. Task 1 is a systems level capstone effort
focused on the information management, diagnostics and prognostics of EHM
systems. The objectives are to develop Bayesian learning and neural networks for
learning the unknown aspects of nonlinear engine systems and sensor sensitivity
analysis. Task 2 is focused on developing a probabilistic fracture mechanics model
and ASIC (application specific integrated circuit) implementation for efficient on-
board and real-time assessment of the damage state of critical engine components.
The effort is to develop hardware such that sophisticated probabilistic fracture
mechanics algorithms can be placed on-board for evaluation of detected defects. Task
3 is focused on the development of much-needed durability models for thin film
sensors that are either in common use or likely candidates for monitoring changes in
engine performance or detecting and monitoring defects in fracture critical engine
components.

Project Summary

Task 1. Engine, Sensor & Data Communication Systems Modeling

T1.1 Background & Objectives

Recent interest in unmanned aircraft and vehicles has increased the need to
accommodate failures of its components such as actuators and sensors within the
control systems. Since faulty sensor readings can lead to undesirable situations such
as dispatch delays, degraded engine performance, and possibly unsafe operation,
sensor validation is an essential task in the safe operation of an aircraft engine. A
sensor fault is a deviation from the sensor’s expected behavior. Experience has
shown that even carefully designed and tested sensors may encounter such faults.
Consequently, timely detection and validation of sensor faults are very important for
safe and efficient engine operations.

To mitigate the risk associated with engine sensor faults, we have proposed a model-
based probabilistic sensor model that is able to identify sensor faults and to correct
them where there is redundancy in the sensor information. Our current objectives
include designing a model-based sensor validation model and engine modeling, and
development of a detection mechanism that is to discover the occurrences of sensor
faults. Since more advanced wireless technology capable of operating in the high
temperature engine environment in not available at this moment, as the preparation
for the future work, we have studied Bluetooth wireless technology as the framework
in this research. With the given information from multiple remote sensors that needs
to be processed, the Bluetooth technology is investigated in order to assess the real
performance and coexistence issues of wireless sensors in the presence of mutual
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interference. Analytical lower bounds on the aggregated throughput offered by
Bluetooth technology are evaluated at the optimal operating conditions.

T1.2 Approach and Accomplishments

We have studied and designed simulation models that have included probabilistic
information of sensors. Since faulty sensor readings can lead to an unreliable
situation, such as dispatch delays and possible unsafe operation, fast and accurate
sensor validation is a crucial component for guaranteed system performance. Built-
in-test (BIT) is an approach becoming popular in many new complex systems and can
likely be extended to include sensors. Along these lines, we describe a Markov-jump
state space model approach. We also construct a neural network engine simulation
model to “learn or capture” the unknown aspects that occur in a more traditional
nonlinear state-space model. We develop several Bayesian solutions to sensor
validation, based on particle filtering algorithms: Mixture Kalman filter and
Stochastic-M algorithms, and expectation maximization (EP) algorithm. In general,
the EP algorithm has less complexity and better accuracy. The block diagram of the
designed system is shown in Figure 1.

y (Measurements)

Engine System

Engine
Controller

Measurements

Figure 1: Block diagram of the designed system

As for the progress of wireless sensor technology, we have explored actual state of art
of sensor technology (hardware and technical literature) for monitoring an aircraft
engine, and focused on a model for the wireless architecture for short-range data
communications. In addition, we derived a completely analytical framework, which
allows the determination of the aggregate throughput offered by a group of co-located
Piconets, as well as the determination of the optimal operating conditions while taking
propagation aspects into account. For data communication, we also explore the
performance of several Piconets located in the same region that follows an
IEEE802.11b standard. An approximated threshold-based approach on Bluetooth
Piconets is proposed to determine the probability of packet collision. Assuming
interference limited operating conditions caused by the presence of the interference
due to the packet losses, we have developed result of receiving maximum throughput
given randomly distributed sensor coverage areas.



Task 2. Development of a Probabilistic Fracture Mechanics Model for
Implementation in an Application Specific Integrated Circuit

T2.1 Background & Objectives

The current state-of-the-art in engine health monitoring (EHM) is focused on detecting
vibration signals, oil debris, foreign object damage, and other engine health indicators,
interpreting the signals and making diagnostic and prognostics decisions. Sometimes a
wear model is included to estimate remaining life. EHM technology at this point in time
attempts to sense the presence of a crack through indirect measurements such as vibration
abnormalities. Some success is reported in spin pit testing but application in an on-board
setting is dubious.

There has been a tremendous advance in the science and computational ability to predict
the behavior of cracks (size, cycles to failure) in the past 50 years. There are now several
sophisticated computer codes for crack propagation calculations such as DARWIN®,
NASGRO®, and AFGROW. These codes have many man-years of investment in
algorithm development, materials characterization and code verification. However, at
best these codes can be used in a design mode or an after the fact analysis given a
download of the data from an engine. Currently, trained neural networks are used to
implement a mechanical or material degradation in order to get real-time performance.
However, neural networks must be trained for each particular situation and cannot model
the capabilities in today’s and tomorrow’s fracture mechanics codes.

In order to get real-time performance and use the sophisticated fracture mechanics
knowledge, we will implement a probabilistic fracture mechanics algorithm in hardware
to facilitate real-time estimation of crack behavior and structural integrity. The objective
of this research is to develop and test an ASIC (Application Specific Integrated Circuit)
that implements a probabilistic fracture mechanics algorithm for real-time assessment of
structural integrity of engine components. The initial focus will be on gas turbine engine
disks, however this technology is pervasive and therefore could be extended to other
engine components, as well as other structural systems, e.g., airframes, off-shore
structures.

The algorithm, implemented in hardware, will provide a real-time probability of fracture
estimate for the engine component (initial focus is the disk) given loading inputs, material
properties, initial crack size estimate and other inputs, see technical details below, using
low-cycle fatigue (LCF) crack propagation fracture mechanics.

T2.2 Approach and Accomplishments

A Matlab program was initiated for prototyping the computational algorithms with the
initial focus being the development of a rainflow algorithm for determining and
extracting damaging fatigue stress cycles in a real-time setting. The rainflow and
crack growth algorithms were combined and used to simulate crack growth as a
function of engine usage, and the crack growth computed was compared against
results from well-established fatigue programs DARWIN® and AFGROW.
Subsequently, a probabilistic crack growth algorithm has been implemented by
incorporating a Monte Carlo algorithm to consider uncertainties in localized stresses
and crack growth rates.



On-board implementation has focused on the implementation of the deterministic low
cycle fatigue algorithm on a TI DSP Processor. The processing board and sample
results are shown in the figure below, see Figures 2 and 3. The input signal represents
the engine component RPM values during a representative flight are shown in Figure
3a. The values are converted into localized stress levels by the on-board algorithm,
damaging stress pairs are determined, and crack growth is computed. The cumulative
crack growth is shown in Figure 3b.

Figure 3a. Input Signal Figure 3b. Crack Growth

Task 3. DURABILITY OF SENSING MATERIALS

T3.1 Background & Objectives

Vehicle health management (VHM) requires on-board sensors that are typically
actuated using materials that exhibit shape memory, piezoelectric, or magnetostrictive
behavior. In many cases, these sensing materials are used in the form of multi-layered
structures whose functionalities and performance characteristics are intimately linked
to their nanocrystalline or amorphous states. Furthermore, the durability and
functionalities of thin-film materials are known to depend on layer thickness and
likely on test temperature. Unfortunately, these material properties are generally not
available for thin-film materials. Since on-board sensing devices must be more
durable than the components that are being monitored, there is a strong need
determine the operative damage mechanism and to characterize the durability of thin-
film sensing materials in the pertinent size scale and under conditions that are relevant
to the service environment, which usually involves fatigue or thermomechanical
loading. The initial focus of this effort will be on magnetostrictive thin film sensor
materials because of the anticipated importance to VHM and relative lack of
durability information.



The objectives of this task are: (1) to determine the durability of magnetostrictive
sensing materials subjected to mechanical, electrical, and thermal loading, (2) to
evaluate the dependence of the performance and durability on layer thickness, and
service temperature, and (3) to develop a durability model to optimize sensor
durability with respect to layer thickness and interfacial strength. The first year of
this program has focused on a room temperature assessment, while elevated
temperature assessments are planned for years two and three.

T3.2 Approach and Accomplishments

An integrated experimental/nanomechanical modeling approach is being utilized to
achieve the task objectives. Innovative processing techniques are being used to
deposit thin-film sensor materials on an engineering alloy substrate. Novel
experimental techniques are being employed to characterize the microstructure, yield
strength, fatigue, and sensing (i.e., magnetostrictive) properties of the thin-film sensor
materials at ambient temperature. The effects of layer thickness, temperature, and
interfacial strength on the mechanical and functional properties are being interrogated
and correlated to the underlying nanocrystalline state in order to identify the pertinent
failure mechanisms. This fundamental understanding is being used to model the
failure process at the nanoscale level. The initial low temperature results are
applicable to fan applications (including the critical JSF lift fan), whereas the elevated
temperature results proposed in the later years of the program would be applicable to
fracture critical compressor and turbine components.

The results indicated that the interface toughness of FeCo/Ti-6A1-4V measured by an
indentation technique is independent of layer thickness at ambient temperature. The
critical stress for interface debonding increased with decreasing layer thickness
according to a critical energy release rate criterion. lon-cleaning improves adhesion,
enhance the interface toughness and increase the debonding stress of the thin films, as
illustrated in Figure 4. The resulting interface is relatively weak thereby preventing
crack penetration into Ti-6Al-4V substrate — thus interfacial strength can be
engineered to prevent damage to the substrate. As a result, the FeCo thin films did
not alter the fatigue life of the Ti-6Al-4V substrate. The presence of microcracks and
localized interface debonds in the thin films did not affect the functionality of the
sensor to detect strain via the inverse magneto-elastic effect. The overall durability of
the films was optimized to be in the range needed for practical application of the film
as an imbedded sensor.
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Figure 4. Ion-cleaning increased the interface toughness from 2 J/m’ to 4 J/m?
and increased the debonding stress to provide a durable FeCo thin
film. A comparison of the measured and predicted debonding
stresses for FeCo thin films on Ti-6Al-4V shows that the debonding
stress in FeCo thin film increases with decreasing film thickness
according to a critical elastic energy release rate criterion shown in
the inserted equation.

Accomplishments of this task include (1) measuring the elastic and hardness
properties of FeCo thin films by nanoindentation, (2) characterizing the interface
properties and identifying the fracture mechanisms in FeCo/Ti-6Al1-4V, (3) optimizing
the processing condition and the interface properties to achieve a durable FeCo thin
film that did not cause a fatigue life debit to the Ti-6Al-4V substrate, (4) a
demonstration of the functionality of the FeCo thin films as a strain and crack
detection sensor in the presence of micorcracks and interface debonds, and (5) the
formulation of a strategy for optimizing interfacial strength so that thin films can be
engineered to meet the durability requirement for embedded sensors without
damaging the substrate.

We have discovered that interface toughness of FeCo/Ti-6Al1-4V is independent of
layer thickness and found out that delamination strength of FeCo/Ti-6A1-4V increases
with decreasing layer thickness. Also, we found out that weak interface prevents
crack penetration into Ti-6Al-4V substrate — thus interfacial strength can be
engineered to prevent damage to the substrate. We have discovered that low-cycle
fatigue lives of Ti-6A1-4V are identical with and without FeCo thin films. Our major
achievement is that we are able to identified strategy of optimizing interfacial strength
so that thin films can be engineered to meet the durability requirement for embedded
Sensors



Introduction

The UTSA Engine Health Monitoring project covers three major task areas which are
described here as: (1) System modeling of engine and sensor systems using neural
networks and Bayesian learning. Data communication is also an aspect of the
modeling. (2) Development of a probabilistic fracture mechanics model and a design
for a hardware implementation. (3) The durability and development of sensor
materials. For convenience this report is organized under these three areas and each
task area includes a background & objectives description, a progress description for
each quarter, and references in each area.

1. Engine, Sensor & Data Communication Systems Modeling

1.1 Background & Objectives

Recent interest in unmanned aircraft and vehicles has increased the need to
accommodate failures of its components such as actuators and sensors within the
control systems. Since faulty sensor readings can lead to undesirable situations such
as dispatch delays, degraded engine performance, and possibly unsafe operation,
sensor validation is an essential task in the safe operation of an aircraft engine. A
sensor fault is a deviation from the sensor’s expected behavior. Experience has
shown that even carefully designed and tested sensors may encounter such faults.
Consequently, timely detection and validation of sensor faults are very important for
safe and efficient engine operations.

To mitigate the risk associated with engine sensor faults, we have proposed a model-
based probabilistic sensor model that is able to identify sensor faults and to correct
them where there is redundancy in the sensor information. Our current objectives
include designing a model-based sensor validation model and engine modeling, and
development of a detection mechanism that is to discover the occurrences of sensor
faults. With the given information from multiple remote sensors that needs to be
processed, the Bluetooth technology is investigated in order to assess the real
performance and coexistence issues of wireless sensors in the presence of mutual
interference. Analytical lower bounds on the aggregated throughput offered by
Bluetooth technology are evaluated at the optimal operating conditions.

1.2 First Quarter Accomplishment

We have investigated both linear and non-linear principal component analysis (PCA)
of sensor information in the first quarter. We also studied and designed simulation
models that have included probabilistic information of sensors. As for the progress of
wireless sensor technology, we have explored actual state of art of sensor technology
(hardware and technical literature) for monitoring an aircraft engine, and focused on a
model for the wireless architecture for short-range data communications. We also



studied the software package of the Bluetooth system in order to be coupled with a
low speed data acquisition/host processor board.

1.3 Second Quarter Accomplishment

We have investigated in this quarter the design of a sensor validation model for
detection of the occurrence of a sensor fault, i.e., fault detection and identification of
fault type, i.e., fault identification. We also selected possible inference algorithms that
could be used for the validation model. In addition, we derived a completely
analytical framework, which allows the determination of the aggregate throughput
offered by a group of co-located Piconets, as well as the determination of the optimal
operating conditions while taking propagation aspects into account.

1.4 Third Quarter Accomplishment

We have investigated the problem of on-line sensor validation. Since faulty sensor
readings can lead to an unreliable situation, such as dispatch delays and possible
unsafe operation, fast and accurate sensor validation is a crucial component for
guaranteed system performance. Built-in-test (BIT) is an approach becoming popular
in many new complex systems and can likely be extended to include sensors. Along
these lines we describe a Markov-jump state space model approach. We also construct
a neural network engine simulation model to “learn or capture” the unknown aspects
that occur in a more traditional nonlinear state-space model. For data communication,
we also explore the performance of several Bluetooth Piconets located in the same
region that follows an IEEE802.11b standard. An approximated threshold-based
approach on Bluetooth Piconets is proposed to determine the probability of packet
collision.

1.5 Final Accomplishment

We have developed an alternative Bayesian solution to sensor validation based on
expectation maximization (EP) algorithm. This method can on-line track sensor state
efficiently. We investigate the application of the developed EP algorithm to a realistic
system of a planetary rover of Mars. The results show that compared with Mixture
Kalman Filter developed in the third quarter, the EP has less complexity and better
accuracy.

1.5.1 On-line Sensor Validation with Expectation Propagation (EP)

We lay out in this section the steps of EP algorithm for sensor validation on the hybrid
DSSM (1). For easy composition, we first explain the notations in the algorithm of
Ep: 2(Xelyre1) = N(xelXe—1.Prie-1) s the predictive density of x;

q(Xelyre) = N(xe|Xeje. Peye) is the posterior of Xs;
q(xely1.1,-¢) = N(Xe|X_y7. P_y7) )

is the smoothing density of x, without the current observation ys; g(y: | X)) = N(fre. Ae)

is the likelihood of y, given X; q(s:| Y1.-1) = Discrete(q(s: = 1 | y1:-1), .. , g(s¢ = M|
y1..1)) is the filtering prior of s;; g(s| y1.7, ..) = Discrete(q(s: = 1lyir ) - > q(se = M|
y1.7. ) is the smoothing prior of s;; g(s/| y1.) = Discrete(q(s:=1|y14), ..., g(s: = M|



Y1) is the posterior of s, . £ = Zsca(slyre-1)V(HaXqeo1, Hy Poer H, + C)
normalizing constant; K, is the Kalman gain and J, is the smoothing gain.
The algorithm of EP for sensor validation can be summarized in the following:
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« Obtain new likelihood for the next refinement
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- For t= current-windowsize—1 - current

+ Get the predictive densities, which are the same as (7)(8X9)
+ Incorporate the true likelihoods into posterior distribution
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1.5.2 Sensor Validation of a Planetary Rover system with EP

The developed EP is applied to a realistic system of a planetary rover of Mars. The
model is a high dimensional hybrid state space model or called linear switching
model. It consists of one continuous state x,, one discrete state s, and an observation
variable y,. The continuous state X, includes six system parameters that capture the
dynamic evolution of the automaton, and the discrete state s, represents 6 different
fault states or operational modes of the system. The reason that we use this model is
that it has more realistic meanings than other mathematical models for engine fault
diagnosis. Particle filters, such as risk-sensitive PF, variable resolution PF, Rao-
Blackwellized PF, have been mentioned [10] and used on this model [11]. Our
purpose of using EP is to show the simplicity and comparable result of EP with
Particle filters.

The model is described as follows

p(s, =m|s,_, =n)=T(n,m)
%, = F(8,48.)%,  + 1+ pn,
Y, =Hx, +v,

where T(n, m) is transition matrix of the discrete state s,; F(.) denotes the state matrix,
which depends on previous and current discrete states; H is measurement matrix,
which is independent of the discrete and continuous states; u is the input; n, and v, are
Gaussian noise vectors. The discrete state s, has six modes that refer to flat driving,
rock under front wheel, rock under middle wheel, rock under rear wheel, rock
between front and middle wheel and rock between middle and rear wheel,
respectively. The six parameters of the continuous state represent the rocker and
bogey angles and their derivatives, rock width and rock height. Rocker-bogey is a
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suspension system. The model is used to describe the response of the suspension
system to driving over rocks and other obstacles to simulate situations where the
rover’s scientific instruments could collide with an obstacle, or where the rover could
become “high-centered” on a rock. The only two outputs are the rocker and bogey
angles. One difficulty of this model is how to describe the state matrix F(.,.). It is hard
to be expressed by a single matrix, since it is a series of nonlinear sequential
reactions, involving the previous and current discrete states. We compare through
computer simulation the performance of the EP with a particle filter, the mixture
Kalman filter (MKF), developed in the 3™ quarter. In our experiment, we used 500
consecutive observations. We compared the performance in terms of accuracy and
complexity. For EP, we defined the convergence as the KL distance between q(s))s
from two consecutive EP iterations less than le-3. Based on this criterion, our
simulation indicated that, most of time, EP converges within 2 iterations. For MKEF,
50 particles were used. In Figure 1.1, we plotted the number of fault detection errors
vs. SNR and it clearly demonstrates the better performance of EP. Especially, when
the noise is large, EP generates a lot less errors than the MKF. We also compare the
complexity of the two algorithms. We considered the complexity in terms of the
computer run-time of for 500 time steps and the simulation indicated that EP finished
within 12.05s while MKF took 15.82s. It is evident that EP has less complexity than
MKEF.

251 E

# of errors
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1

10+ -
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Figure 1.1. Number of errors per 500 time steps at different SNRs



1.5.3 Bluetooth Piconets in the Presence of Mutual Interference

In previous three phases of this project the coexistence issue has been investigated in
the case of IEEE802.11b low-rate link (1 Mb/s) interfered by a set of Bluetooth
piconets. We explored the possibility to introduce traffic shaping techniques, to
reduce the effect of interference for data traffic types. The effect of fading was also
taken into account by simplified assumptions where some performance measures,
such as the packet error rate, the number of packet retransmissions and the
transmission latency, were introduced.

The goal of this task is to investigate the analytical coexistence of Bluetooth piconets
taking the interference issues into account in a more complicated setting and to
provide analytical tools for performance evaluation. Generally speaking, to obtain the
overall system performance, a bit level simulation combined with a protocol level
simulation does not represent a practical solution due to prohibitive computational
time required. Hence, there is the necessity to introduce new accurate and simple
methods to performance evaluation that avoid simulation. Based on the previous
analytical results in Q1-Q3 reports we assume that only a terminal can transmit at a
time in a piconet, the number of 7—1 piconets surrounding the reference piconet

coincide with the number of potentially interfering transmission.

We are interested in the average packet error probability experienced by the reference
master which is given by

=

n-1
2p2
K2R? .
1= 1= pr| Lif KR <R

n=1
252
1-[1- l—l—K 12" pr ,otherwise
2R
where:

a) F,,, is the probability of packet loss probability, derived in Q3 report,
b) R, is the maximum radius of a circular region of 7 unsynchronized piconets

distributed uniformly in a circular region of radius R,

¢) p is the probability of frequency collision, derived in Q2 report, and
d) Interferer activity factor is denoted by r as in QI report.

e) K is a properly protection radio factor.

The results are plotted in Figure 1.2.

P, =1-0-P, ) =; Eq. 1.5.3a
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Figure 1.2. Comparison between P, curves for 77 synchronized and
unsynchronized piconets

From the above figure we find out that if the piconets are synchronized then the
probability of error is decreased. For practically issues and implementation of sensors
we suggest using the synchronism of the transmission in order to diminish the mutual
interference. The relation in Eq. 1.5.3a gives analytical relation so we don’t need to do
any simulation.

We are also interested in the optimization of the communication performance of the
sensors in the context of information theory. This is quantized by the throughput
bounds Sj,,.q given below in two cases when KR, <R, (D represents the length of
the adopted packet type) DMI1 or DHI, since we are considering one-slot
transmission).

n-1
ol. KR
-~ JT[ = 2RI§‘ pr] Eq. 1.5.3b

and when KR, >R

D K2R2 =
Sbound=”7 1—[1— 2R1§" pr] Eq. 1.53¢

In order to compare our results with the results predicted by information theory we
need to plot these above results in the limiting regime i.e R/ Ry =m, m=1,2,3.

The results are plotted in Figure 1.3.
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The above figure is very important since it tells us how many sensors we can arrange
or we can randomly distribute in a given area in order to get the maximum of the
throughput. We assumed interference limited operating conditions caused by the
presence of the interference due to the packet losses. Including other effects as exact
position, the maximum communication rate for each sensor, sum capacity,
information rate capacity, user sensors capacity, the best receiver for the master are
open problems and are left for future research.
It is of interest to calculate the exact the number of sensor which maximize the above
throughputs. The results are given below, for the KR, <R

1

Noptim = Eq. 1.5.3d
1
In 3 Rf
1- 5 pr
2R
and when KR, >R
1
Noptim = Eq. 1.5.3e
In ! 2
R
1-[1- > Pr
2K°R,
Future Research

Our models and analytical results developed in this task and overall in this research
can be expanded further for specifically conditions, which take all the transmission
aspects into account such as

Propagation effects
Interference

Modulation format
Coding techniques
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And medium access control aspects

e Frequency hopping
e Packet structure
e Traffic load
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2. Development of a Probabilistic Fracture Mechanics Model
for Implementation in an Application Specific Integrated
Circuit

2.1 Background & Objectives

The current state-of-the-art in engine health monitoring (EHM) is focused on
detecting vibration signals, oil debris, foreign object damage, and other engine health
indicators, interpreting the signals and making diagnostic and prognostics decisions.
Sometimes a wear model is included to estimate remaining life.
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EHM technology at this point in time attempts to sense the presence of a crack
through indirect measurements such as vibration abnormalities. Some success is
reported in spin pit testing but application in an on-board setting is dubious.

Other research however is moving towards direct interrogation of the component
material to sense damage that could pose a threat. For example, a new DARPA
initiative on Material Prognosis is planning to address the detection of fatigue damage
or cracking on a turbine disk by depositing a thin-film magnetostrictive material on
the disk, exciting the sensor, creating a mechanical elastic wave in the disk, and
recording the wave reflections. Processing of the reflected waves can indicate the
presence of a crack. If a defect is detected, algorithms are needed to assess the
severity of the defect.

There has been a tremendous advance in the science and computational ability to
predict the behavior of cracks (size, cycles to failure) in the past 50 years. There are
now several sophisticated computer codes for crack propagation calculations such as
DARWIN®, NASGRO®, and AFGROW. These codes have many man-years of
investment in algorithm development, materials characterization and code
verification. However, at best these codes can be used in a design mode or an after the
fact analysis given a download of the data from an engine. Currently, trained neural
networks are used to implement a mechanical or material degradation in order to get
real-time performance. However, neural networks must be trained for each particular
situation and cannot model the capabilities in today’s and tomorrow’s fracture
mechanics codes.

In order to get real-time performance and use the sophisticated fracture mechanics
knowledge, we will implement a probabilistic fracture mechanics algorithm in
hardware to facilitate real-time estimation of crack behavior and structural
integrity.

Since it is unlikely that the complete level of sophistication of the today’s fracture
mechanics codes with many man-years of investment can be programmed in hardware
in a short amount of time, a particular challenge will be to determine the most
significant elements of the probabilistic fracture mechanics algorithm. These elements
will then be the focus of the hardware implementation.

The objective of this research is to develop and test an ASIC (Application Specific
Integrated Circuit) that implements a probabilistic fracture mechanics algorithm for
real-time assessment of structural integrity of engine components. The initial focus
will be on gas turbine engine disks, however this technology is pervasive and
therefore could be extended to other engine components, as well as other structural
systems, e.g., airframes, off-shore structures.

The algorithm, implemented in hardware, will provide a real-time probability of
fracture estimate for the engine component (initial focus is the disk) given loading
inputs, material properties, initial crack size estimate and other inputs, see technical
details below, using LCF crack propagation fracture mechanics.

The objectives are phased over three years with the effort of years 2 and 3 dependent
on the outcome of previous year’s efforts. A flowchart of the deterministic fracture

16



mechanics is shown in Figure 2.1. The elements of the algorithm are discussed as

follows:

A) Input from existing sensors (RPM, temperature, vibration, power level

angle)

B) Crack sensor input — estimates location and size
C) Stress transformation — determines stresses from sensor inputs from A.
D) Rainflow analysis — determines damage increments

E) Material property inputs — crack growth data (da/dN)

F) Fatigue life model — calculate crack growth increment

G) Input from crack sensor regarding current crack size

H) Failure analysis
I) Life estimate

Rainflow is the name given to the method of determining stress reversals that will
cause fatigue crack growth. (A stress reversal represents a fatigue cycle from a min-
max-min or max-min-max stress values.) A balanced rainflow algorithm, neither
including nor excluding too many stress reversals, is critical to having a real-time on-
board system. Including too many stress reversals would negatively affect the
performance of the system and may prevent a real-time application. Excluding
damaging stress reversals will be nonconservative.

Power

HIOGHH

Crack Sensor
- Input (location)

¢

Load (stress)
Transform

Rainflow
Analysis

4

|

T

Fatigue Life Model:

Fatigue Crack
Growth Analysis

Crack Sensor:a.c
a: crack length
c: crack width

—

Failure Analysis
K>K. or a > critical size
K: stress intensity factor
Kc: fracture toughness

Material Properties from baseline
Crack-growth data (K_)

Y

Life Prediction

e

Figure 2.1 Flowchart of deterministic fatigue algorithm

In the following sub-sections, the algorithms for data filtering and rainflow counting

are explained.
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2.2 Data Filtering Process

The beginning step in a fatigue analysis for variable-amplitude loading such as engine
rpm data is to determine a compact form of loading data that is composed of multiple
sequences by peaks and valleys. A counting of rainflow pairs is easy by using filtered
loading data, and calculation time is also saved in a real-time application. In this sub
section, a new simple algorithm for data filtering process is suggested and
demonstrated using a sample data and a real engine data.

2.2.1 Procedure

The fundamental idea of a data filtering process is to select the peaks and valleys from
a variable-amplitude loading. In order to accomplish a data filtering process,
following two steps are required.

A. First, eliminate all intermediate values between peaks and valleys, and
B. Secondly, eliminate all repeating magnitude.

Some technical computer programming steps are explained in the next section 2.2.2,
by using a sample test data.

2.2.2 Example

A sample test data is shown in Table 2.1 that contains 15 loading steps with positive
stress data.

Table 2.1 Sample data of variable-amplitude loading

Loadingsteps| 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Stress data 02 2 2 .55 5 9 66 74 4 8 9

The peaks and valleys stress data can be obtained, 0-9-6-7-4-9 by insight from the
sample data in Table 2.1. To obtain these peaks and valleys numerically, it is required
to calculate the numerical difference in magnitude between two consecutive points. A
detailed procedure is explained as followong, and summarized the results in Table
2.2. The Diff 1 and Diff 2 in Table 2.2, represent differences, say current and
previous difference, respectively. The next step is to determine a slope of each Diff 1
and Diff 2 for checking a slope change occurrence. The sign 1 means a positive
slope, 0 for a zero slope, and —1 for a negative slope, respectively. The last step is to
modify the slope to eliminate same intermediate slopes, using the sign of Diff 1 and
Diff 2. The rules for a modification slope in the last step are:

[sign(diff 1)=1 and sign(diff 2)=0] =» 1,

[sign(diff_1)=-1 and sign(diff_2)=0] =» -1,

[sign(diff 1)=0 and sign(diff_2)=0] and [sign(diff_1-1)=1]

[sign(diff _1)=0 and sign(diff_2)=0] and [sign(diff_2-1)=1]
1
1

] . |
1’
[sign(diff 1)=0 and sign(diff 2)=0] and [sign(diff_1-1)=-
[sign(diff _1)=0 and sign(diff_2)=0] and [sign(diff 2-1)=-

>
>
] -1,
191

b

18



The last raw, End_sign in Table 2.2 shows the modified slope. The peaks and valleys,
0-9-6-7-4-9 can be obtained by a selection of the stress when a slope change has
occurred, with keeping beginning and end stress values.

Table 2.2 Data filtering scheme of variable-amplitude loading (15 points)

Loading 1121314151617 (8191101 ]12|1]14]15
Stress Bl2121215|(5815}1916161 714 |4]8]9
Diff 1 212101013101 0141-31l01 11 =319 14711
Diff 2 219013101014 |-31011]|-3[014]1][™®
Sign(diff D | * {1 10t0]1j0]0]1l-1]0]l1]-1]@1]1]1
Sign(diff 2) | 1 [0 O |1 o fO |1 ]-1[fO0] 1 [-1]O |1 /[1]°*
End_sign ATAESEBRERARERESCICANIER EANEN "
* beginning and ending
points

This technique is very simple and effective to determine only the peaks and valleys
for any kinds of data sequence, and easy to write a program. Figure 2.2 shows the data
reduction results schematically using Matlab, by using the sample test data of Table

wedevaaads

Figure 2.2 Comparison of raw data filtered data using 15 test data

The data reduction process is also demonstrated to a real engine data. In the Figure
2.3, the first graph represents a raw stress data from engine rpm, and the second graph
shows only peaks and valleys data, which is filtered from 11,360 raw data to 256
points. It can be understood that there is many repeated data with the same value and
with unnecessary intermediate data between peaks and valleys. The filtered points are
only consisted of peaks and valleys like shown a zoomed box in the second graph,
Figure 2.3.
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2.3 Rainflow Cycle Counting (Range-Pair Method)

In order to improve rainflow cycle counting for a real-time data input and analysis, a
range-pair method is chosen. The advantages of range-pair method are that it is simple
to apply an algorithm because of comparing just three consecutive points, and it may
pick up many rainflow pairs before sub-iteration, to find remaining rainflow pairs.

2.3.1 Cycle-Extraction Method

k

1) Define kj, ks, and k3 from the stress ki
Ao,
data without data reordering. Ao,

2) Define two stress ranges using three
consecutive points: e K ——
Ao, = 'O'kz —GHI,AO'2 = IGkS _O'kzl =

3) Extract two points k;, k; (peak and
valley points) if the condition, Figure 2.4 Definition of stress range
Ao, < Ao, is satisfied.

4) Define three new consecutive points, k;=k3, ka=k;:1, ks=k;+» when condition

Ao, < Ao, is satisfied.

5) Define three new consecutive points kj=ks, ko=k;+1, ks=k;+2 when condition
Ao, < Ao, is not satisfied.

6) Perform until last points, and one reversal counting for the last three points, in
other words, extract ky, ks if the condition Ao, > Aa, is satisfied.

7) Perform sub-iteration using remaining points which are called residue, to find
out the stress pairs which are generated by residue.

2.3.2 Verification

ASTM E1049-85 test sample data

ASTM test data is chosen to validate the developed range-pair rainflow counting
method. Figure 2.5 represents the ASTM data and result, which has 9 original data
and 4 rainflow pairs. The magnitude and cycle of rainflow pairs are sketched by each
black triangle. The magnitude of each rainflow pair is 3(A-B), 4(E-F), 8(C-D), 6(H-I)
respectively. Each rainflow pair in Figure 2.6 represents UTSA result. From Figures
2.5-2.6, rainflow pairs are exactly matched in magnitude and cycles.
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Figure 2.5 ASTM rainflow test results [4]

Real engine data (Air-to-Ground)

This sub-section is introduced to verify the developed code UTSA to a real engine
data. Unlike the sample test data, there is a huge number of input data. Darwin is used
to compare the rainflow pairs with UTSA. The magnitude of stress pairs is not equal
in each program since different rainflow counting methods are adopted in each code
(simplified rainflow method for Darwin, range-pair method for UTSA). The total
number of rainflow pairs is same, 132 for both UTSA and Darwin. There is no need
that the total number of rainflow pairs should be the same for each code. The big
difference between UTSA and Darwin rainflow sequence is that UTSA uses incoming
order of data by real time acquisition, but Darwin modifies the sequence of order by
swapping the maximum stress pairs locate at the beginning.

Figure 2.7 represents aAo (sigma_max - sigma_min) comparison from the rainflow
pairs output between UTSA and Darwin by ascending order. From this figure, UTSA
and Darwin show almost the same magnitude of sigma diffenerce at each rainflow
pair. The detailed comparisons in a specific region are depicted in Figures 2.8-2.10. A
sigma difference shows the exact same values between UTSA and Darwin in a range
of rainflow pairs, 1~12 (Figure 2.8), and UTSA a little higher than Darwin in a range
of rainflow pairs, 61~72 (Figure 2.9) and Darwin a little higher than UTSA in a range
of rainflow pairs, 121-132 (Figure 2.10).
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Rainflow pairs: 121-132
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2.4 Fatigue Analysis

In order to verify the crack growth by fatigue analysis using the developed code
UTSA, constant amplitude loading (test data) and variable-amplitude loading (real
engine data) are considered. Paris law is utilized for UTSA to simplify the fatigue
analysis. Darwin and AFGRO are used to compare the crack growth results.

2.4.1 Paris Law

The simple algorithm of Paris law is introduced, and evaluated in UTSA. Stress
intensity is defined as following.

AK =K _-K (2.4.1)
In a surface crack, Kvaries along the crack perimeter. Therefore, complete
characterization of crack growth requires description of both crack shape (length,
width) and size. In this research, a noncircular crack shape is considered in
determining K , in equation (2.4.2).

K = o\Jm(c)p (2.4.2)

min

Where, £ is the dimensionless geometry factor. From an equation (2.4.2), K _ and

K ... are defined as followings.

K., = amu,/m(c)ﬂ
K. =o..mlc)f

0,..and o, are the maximum and minimum stress at each rainflow pairs that can be

(2.4.3)

obtained from rainflow counting. By inserting equations (2.4.1-2.4.3) into a Paris law,

d : g
£ . ¢ _paris(AK)™-7" | an incremental crack growth can be calculated.

dN
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Aa(c) = c_ paris* AK™-P"" * AN

(24.4)
a(c) = a(c) + Aa(c)

The surface crack shape and dimension are represented in Figure 2.11.

2b (width)

A

t (height)

a4y

y
2c

Figure 2.11 Surface crack shape and dimension in a finite plate

2.4.2 Verification
2.4.2.1 Constant Amplitude Loading

One simple example of constant amplitude loading is examined to verify the
developed code UTSA. Geometry dimension and material properties are summarized
in Table 2.3. The magnitude of constant loading is 80 ksi, with an initial value 0 ksi.

Table 2.3 Geometry and material properties

Crack growth rate Paris law
Initial crack size a=c=0.2
Fracture toughness 58.0
Constants for Paris law | ¢ paris=2.325e-09; m paris=3.0594
Specimen dimension width=height=10
Crack type surface crack(Darwin: SC02)
Material property Darwin : ti64 Paris_closure.mat
Cycles 10

Crack growth rate

Figure 2.12 represents the crack growth, with respect to number of cycles. From these
figures, UTSA and Darwin results show very good agreement. A normalized
comparison is represented in Figure 2.13, by setting UTSA=1.
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Figure 2.12 Comparison of a_crack with respect to cycles
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Figure 2.13 Normalized comparison of crack growth with factor,

Kmax (Maximum of stress intensity factor)

Figure 2.14 represents Kmax and normalized values comparison. UTSA and Darwin
show very close results.
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Figure 2.14 Comparison of Kmax and normalized values with cycle

increase

Dimensionless geometry factor, B

Figure 2.15 represents a dimensionless geometry factor, B solution. UTSA and
Darwin show very close results to c-direction, but Darwin shows almost constant

value, 0.75, for both directions.
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Figure 2.15 Comparison of g with flight number increase
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2.4.2.2 Variable-Amplitude Loading (real engine data: Air to
Ground)

For a variable-amplitude, three softwares (UTSA, Darwin, AFGROW) are applied to
compare the crack growth, Kmax, and dimensionless geometry factor, B. An initial
crack size is assumed 0.3, and 10 flight number is assumed. Other geometry and
material properties are summarized in Table 2.4.

Table 2.4 Geometry and material properties

Crack growth rate Paris law
Initial crack size a=c=0.3
Fracture toughness 58.0

Constants for Paris law | ¢ paris=2.325e-09; m_paris=3.0594
Specimen dimension width=height=10

Crack type surface crack(Darwin: SC02,
AFGROW:Center semi_elliptic surface flaw)
Material property Darwin : ti64_Paris_closure.mat
AFGROW: ti 6Ai-4V
Flight numbers 10
Crack growth rate

Figures 2.16-12.18 represent the crack growth results in both directions. Darwin
shows faster crack growth, and AFGROW shows slower crack growth than others.
UTSA and UTSA D (using Darwin stress pairs and running UTSA code) show
almost the same results, and their results are between Darwin and AFGROW results.
There is a little weak point to compare directly AFGROW with other results since the
material used is not the same, as mentioned in Table 2.4. By comparing with Figures
2.16-2.18, c_crack grows faster than a_crack. A normalized comparison is represented
in Figure 2.17, by setting UTSA=1. Both cracks show very little percentage
difference, say within 1%.

a_crack

0.3025
. 0302 =l
£ 03015 __4—H—5 | [T pawn

> S

£ 0301 5 X | [—%—UTsA
& 0.3005 | — X : —6—UTSA_D
‘g 0.3 1 | x AFGRO
& 0.2995

0.299 . . . - . v . - .

1 2 3 4 5 B8 7 8 9 10
Number of flights

Figure 2.16 Comparison of a_crack with flight number increase
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c_crack

0.303

__ 0.3025
0.302

0.3015

0.301
0.3005 -

—&— Darwin
—=—UTSA
——UTSA_D
—X— AFGRO

Crack length (in

0.3 1

0.2995

0.299 +—————

4 5 6 7 8
Number of flights

9 10

Figure 2.17 Comparison of ¢_crack with flight number increase

Normalized crack size

0.95

a_crack (reference: UTSA=1)

IS

12 3 4 5 6 71 89 10
Number of flights

—a&— Darwin
—¥—UTSA
—e—UTSA_D
—X— AFGRO

Normalized crack size

1.05

1.025

0.975

0.95

c_crack (reference: UTSA=1)

R TR

1 2 3 45 6 7 8 9 10
Number of flights
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Figure 2.18 Normalized comparison of crack growth with factor, UTSA=1

Kmax

Figures 2.19-2.20 represent Kmax and normalized value comparison. AFGROW
shows approximately 5% lower values relative to other cases, and Darwin, UTSA,
and UTSA_D show very close results.
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Figure 2.19 Comparison of Kmax with flight number increase
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Figure 2.20 Normalized comparison of Kmax with with factor, UTSA=1

Dimensionless geometry factor,

Figure 2.21 represents a dimensionless geometry factor, f solution. UTSA-c,
UTSA_D-c, Darwin-a, and Darwin-c show the largest value in the top line. UTSA-a,
UTSA_D-a, and AFGROW-a show the smallest value in the bottom line.
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Figure 2.21 Comparison of p with flight number increase

2.4.2.3 Various Mission Types

In this subsection, various missions (Instrument & Navigation, Functional Check

Flight, Live Fire Missles, Targat Tow, Air to Ground, Live Fire, Transition and
proficiency) are considered about crack growth rate, Kmax using UTSA and Darwin.
Figures 22-28 represent a crack grow rate, and Figures 29-35 represent a Kmax. All
resulults show very good agreement between Darwin and UTSA. In the legend, D

means Darwin and U means UTSA code results.
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Figure 2.22 Comparison of a crack growth rate with flight number increase
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Figure 2.23 Comparison of a crack growth rate with flight number increase
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Figure 2.24 Comparison of a crack growth rate with flight number increase
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Figure 2.25 Comparison of a crack growth rate with flight number increase
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Figure 2.26 Comparison of a crack growth rate with flight number increase

0.3025
0.302
0.3015
0.301
0.3005
0.3
0.2995
0.299

Live Fire

—e—D_a_crack
—a— U_a_crack

D_c_crack
—»—U_c_crack

10

Figure 2.27 Comparison of a crack growth rate with flight number increase
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Figure 2.28 Comparison of a crack growth rate with flight number increase
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Figure 2.29 Comparison of Kmax with flight number increase
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Figure 2.30 Comparison of Kmax with flight number increase
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Figure 2.31 Comparison of Kmax with flight number increase
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Figure 2.32 Comparison of Kmax with flight number increase
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Figure 2.33 Comparison of Kmax with flight number increase
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Figure 2.34 Comparison of Kmax with flight number increase
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Figure 2.35 Comparison of Kmax with flight number increase

2.5 Monte Carlo Simulation

The statistical model is imbedded in a Monte Carlo simulation [6] to assess the impact
of uncertainty and variability. In a deterministic analysis, the loading results are used
as an input to a damage model, such as a fatigue model. The life of the engine
therefore can then be evaluated at different stress levels. The use of Monte Carlo
simulation in the evaluation process can overcome this problem. In this research, the
uncertainty from stress input is considered, and the stress data was calculated from the
given rpm data using following equation (2.5.1).

Stress = ref _stress *rpm/ref _rpm (2:5.1)

The chosen reference stress value and reference rpm are 113ksi and 14,300
respectively.

In order to compensate uncertainty of stress data, random numbers were generated by
log normal distribution, and multiplied by stress values.

Stress = Stress * Sigma _error (2.5.2)

In equation (2.5.2), a term of Sigma_error is represented by standard deviation and
mean values which have log normal distribution.

Std _dev = \/log(1 +cov?) (2.5.3)

Mean = log(median1+ cov’ ) - 0.5log(l + cov?)
The median and coefficient of variance are 1.0 and 5%, respectively.
2.5.1 Histogram

Figures 2.36-2.40 represent histograms of a-crack, c-crack, crack area for sample 100,
500, 1000, 5000, and 10000 after 10 flights. An initial crack size was assumed, 0.1 in.
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Figure 2.36 Histogram for sample 100
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Figure 2.37 Histogram for sample 500
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Figure 2.38 Histogram for sample 1000
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Figure 2.39 Histogram for sample 5000
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Figure 2.40 Histogram for sample 10000

2.5.2 Kernel Density Distribution

In this subsection, kernel density distribution is introduced to plot each histogram by a
density distribution. Density distribution is needed to study a Bayesian updating
process in the next chapter. Following four different kernels (2.5.4) [7] were
compared in efficiency by defining efficiency of K as (2.5.5).

Epanechnikov %(I —%tz)/\/g for |r] < V5, 1 otherwise

Triangular 1-Jf| for |f|<1, 0 otherwise
1 2
Normal —— '
N27m
(2.5.4)
Rectangular % for |t|<l, 0 otherwise
eff (K)={C(k,)/C(K)}*"* = %{ [PK@)dry " {[K(t)* dry™ (2.5.5)

From comparison of efficiency [7], there is very little to choose between the various
kernels on the basis of mean integrated square root. In this research, normal kernel is
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chosen without specific reason. Figure 2.41 represents a data plot to evaluate data
continuation when random numbers are generated for various samples by ascending
order. Horizontal axis means the total sample numbers and vertical axis means a-
crack size distribution. Figure 2.42 shows a distribution of crack area using normal
kernel with respect to various sample numbers. More smooth density distribution can
be obtained as increase of sample numbers.

100 samples 500 samples 1000 samples
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0.1008
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0.1008
0.10045 4
0.1004
010038 -
0.1003 4=
010028
0.1002 4=
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Figure 2.41 Crack data plot by ascending order for various sample numbers.
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Figure 2.42 Distribution of a density estimation of crack area using normal
kernel with respect to various sample numbers
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2.5.3 Test for Bayesian Updating

If the value of a parameter can be represented as a continuous PDF, the prior
assumptions on the parameter can be formally updated by Bayes’ theorem [8]. If ¢ is
an observed experimental results, the prior distribution f'(@) can be revised in the
light of experimental results using Bayes’ theorem. Let & be the random variable for
the parameter of a distribution, posterior probability that will be in (8,,6, + A8) as

P(£]6)/'(6)A6

f1(6,)A6 =— (2.5.6)
2 P(£6,)1'(6,)A6
where P(¢|6,)=P(e|6, <0 <6, +A6). In the limit, this yields
f'6)= Pe]0)/ @) 2.5.7)

[ P(s16)f'(6,)d6

The term P(g|6,) is the likelihood of observing the experimental outcome &

assuming that the value of the parameter is@. This is commonly referred to as the
likelihood function of #and denoted L(8), and denominator (normalizing constant, k)

is independent of . Then,

/(@) =kL(@)f'(6)

5 (2.5.8)
k=[[ L) f'(6)d6)

In order to test a Bayesian updating process, two test cases are considered. The first
case is to use a textbook sample, and the second case is to apply engine data.

2.5.3.1 Test a Bayesian using a Textbook Sample [8]

Two examples are considered for testing a Bayesian updating. The first case is to use
a uniform prior distribution (known as diffuse prior) and likelihood function, as seen
in equations (2.5.9) and (2.5.10).

f@=10 0<o<1 (2.5.9)

L@@)=6 (2.5.10)
By applying equation (2.5.8), the posterior distribution of & is

f(e)=260 (2.5.11)

This example is very simple case, and Figure 2.43 represents the result using a
developed Matlab code.
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Bayesian updating
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Figure 2.43 Bayesian updating of distribution using a Matlab code

The second example is that the prior distribution function and the probability of
detection are assumed like as equation (2.5.12) and (2.5.13), respectively.

£1(6) = 208.30 0<80<0.06
20-1256¢  0.06<6<0.16 (2.5.12)
0 0>0.16
P(c]6,)=0 0<0
80 0<6<0.125 (2.5.13)
1.0 6>0.125

Figure 2.44 represents a Bayesian updating of a distribution using textbook sample
using a developed Matlab code.

Bayesian updating
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Figure 2.44 Bayesian updating of distribution of flaw depth using a Matlab code
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Figure 2.45 shows textbook results. By comparing Fi igures 2.44-2.45, it shows good

agreement in a posterior distribution.
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Figure 8.3 Detectability versus actual flaw depth (data from Packman et al.,

1968)
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Figure 2.45 Bayesian updating of distribution of flaw depth [8]

2.5.3.2 Test a Bayesian using a Real Engine Data

The 10" flight a-crack data is assumed as a prior distribution function, /'(@) and the
10™ flight c-crack data is assumed as likelihood function L(6). This approximated
function of a probability of detection is used for current research because of not
achieving likelihood data from sensor. It is assumed that we can obtain better
posterior distribution as long as we can obtain a real data from sensor. Figure 2.46
represents a prior and likelihood distribution when 10000 samples were used.

Kemel density by normal: 10000 samples
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